當前位置: » 復材學院 » 復材書店 » 正文
復合材料英文經典著作(二十一)《復合材料科學與工程》
發布日期:2017-12-16  來源:武漢理工王繼輝教授課題組  瀏覽次數:3084
 
   作者:Krishan K. Chawla
出版社:Springer
出版日期:2012年9月27日,第三版
       
第三版前言
本書自第二版出版以來,復合材料學術界及工業界已經進步顯著。在工業領域,航空航天公司(主要是波音和空中客車公司)已經大規模使用的復合材料。確切的說,波音787飛機中廣泛使用了碳纖維/環氧樹脂復合材料,空中客車公司A 380飛機也使用了大量的復合材料,這表明一種材料選用思維模式的轉變。復合材料已應用于波音787的機身、舷窗、機翼、尾翼和穩壓翼等,復合材料的用量已占飛機重量的50%。需要指出的是,復合材料在飛機上的廣泛使用只是上世紀60年代中期以來復合材料一系列創新性應用的代表。除了航空航天工業中的大規模應用外,復合材料在其他領域的應用也迅速的發展,如汽車、體育用品和超導等領域。
新版本中收錄了隨著人類活動的增加所出現的大量新型復合材料。這些新型復合材料包括:碳/碳剎車片、納米復合材料、生物復合材料、自修復復合材料、自增強復合材料、纖維/金屬復合材料、民用飛機復合材料、飛機噴氣發動機復合材料、第二代高溫超導復合材料、WC /金屬顆粒復合材料,相關的問題處在不斷產生和解決的過程中。此外,本書增加了一章:特種復合材料。這一章介紹了許多特種復合材料,如納米復合材料(聚合物、金屬和陶瓷基體)、自修復復合材料、自增強復合材料、生物復合材料以及雙向編織層合板。
需要注意的是,書中所包含的內容超出了常規一學期的課程教學內容。授課者可根據教學安排對內容進行刪減。本書的一個遠大目標是成為研究員、科學家和工程師的必備參考書。
最后,非常感謝美國國家自然科學基金委、海軍研究辦公室、聯邦運輸管理局、洛斯阿拉莫斯國家實驗室、桑迪亞國家實驗室、橡樹嶺國家實驗室、Smith國際公司和Trelleborg公司多年來對我研究工作的支持, 其中的一些工作已包括在本書中。多年來,在我有幸與之合作的人中,一些人對我的生活、職業產生了深刻的影響。我將牢記他們,下面按字母順序列出他們的名字:C.H. Barham, A.R. Boccaccini, K. Carlisle, K. Chawla,N. Chawla, X. Deng, Z. Fang, M.E. Fine, S.G. Fishman, G. Gladysz, A. Goel,N. Gupta, the late B. Ilschner, M. Koopman, R.R. Kulkarni, B.A. MacDonald,A. Mortensen, B. Patel, B.R. Patterson, P.D. Portella, J.M. Rigsbee, P. Rohatgi,H. Schneider, N.S. Stoloff, Y.-L. Shen, S. Suresh, Z.R. Xu, U. Vaidya, and A.K. Vasudevan.感謝Kanika Chawla 和S. Patel對本書中采用數據的校核。感謝我的妻子Nivi,謝謝她的陪伴。最后,特別感謝我的父母,Manohar L.和Sumitra Chawla,謝謝他們的關心和支持。
Birmingham,AL,USA          Krishan K.Chawla
March,2011
作者介紹
Krishan K. Chawla教授在貝拿勒斯印度大學獲得學士學位,在伊利諾伊大學香檳分校獲得碩士和博士學位。他曾在巴西軍事工程研究所、伊利諾伊大學香檳分校、西北大學、加拿大拉爾瓦大學、瑞士洛桑聯邦理工、墨西哥新礦業技術研究所(NMIMT)、亞利桑那州立大學、德國科隆航空航天研究所(DLR)、洛斯阿拉莫斯國家實驗室、德國柏林聯邦材料研究與測試研究。
(BAM)和伯明翰阿拉巴馬大學從事教學或研究工作。他獲得了以下榮譽:西北大學埃希巴赫杰出學者、美國能源部橡樹嶺國家實驗室研究員、墨西哥新礦業技術研究所杰出研究員獎、伯明翰阿拉馬爾大學總統優秀教學獎、美國礦石金屬與材料學會(TMS)教育家獎。在1989 - 1990年,他擔任美國國家科學基金會(NSF)金屬和陶瓷項目總監,同時也是國際材料學會(ASM international)研究員,還是《International Materials Reviews》雜志的編輯。
他的其他著作有:《陶瓷基復合材料(Ceramic Matrix Composites)》、《纖維材料( Fibrous Materials)》、《機械冶金( Mechanical metallurgy)》(共同作者)、《機械冶金(metalurgia Mecanica)》(共同作者)、《材料力學性能(Mechanical Behavior of Materials)》(共同作者)、《金屬基復合材料(metal Matrix Composites)》(共同作者)和《材料缺陷(Voids in Materials)》(共同作者)。
目錄
1 Introduction
References
2 Reinforcements
2.1 Introduction
2.1.1 Flexibility
2.1.2 Fiber Spinning Processes
2.1.3 Stretching and Orientation
2.2 Glass Fibers
2.2.1 Fabrication
2.2.2 Structure
2.2.3 Properties and Applications
2.3 Boron Fibers
2.3.1 Fabrication
2.3.2 Structure and Morphology
2.3.3 Residual Stresses
2.3.4 Fracture Characteristics
2.3.5 Properties and Applications of Boron Fibers
2.4 Carbon Fibers
2.4.1 Processing
2.4.2 Structural Changes Occurring During Processing
2.4.3 Properties and Applications
2.5 Organic Fibers
2.5.1 Oriented Polyethylene Fibers
2.5.2 Aramid Fibers
2.6 Ceramic Fibers
2.6.1 Oxide Fibers
2.6.2 Nonoxide Fibers
2.7 Whiskers
2.8 Other Nonoxide Reinforcements
2.8.1 Silicon Carbide in a Particulate Form
2.8.2 Tungsten Carbide Particles
2.9 Effect of High-Temperature Exposure on the Strength of Ceramic Fibers
2.10 Comparison of Fibers
References
3 Matrix Materials
3.1 Polymers
3.1.1 Glass Transition Temperature
3.1.2 Thermoplastics and Thermosets
3.1.3 Copolymers
3.1.4 Molecular Weight
3.1.5 Degree of Crystallinity
3.1.6 Stress-Strain Behavior
3.1.7 Thermal Expansion
3.1.8 Fire Resistance or Flammability
3.1.9 Common Polymeric Matrix Materials
3.2 metals
3.2.1 Structure
3.2.2 Conventional Strengthening Methods
3.2.3 Properties of metals
3.2.4 Why Reinforcement of metals?
3.3 Ceramic Matrix Materials
3.3.1 Bonding and Structure
3.3.2 Effect of Flaws on Strength
3.3.3 Common Ceramic Matrix Materials
References
4 Interfaces
4.1 Wettability
4.1.1 Effect of Surface Roughness
4.2 Crystallographic Nature of Interface
4.3 Interactions at the Interface
4.4 Types of Bonding at the Interface
4.4.1 Mechanical Bonding
4.4.2 Physical Bonding
4.4.3 Chemical Bonding
4.5 Optimum Interfacial Bond Strength
4.5.1 Very Weak Interface or Fiber Bundle(No Matrix)
4.5.2 Very Strong Interface
4.5.3 Optimum Interfacial Bond Strength
4.6 Tests for Measuring Interfacial Strength
4.6.1 Flexural Tests
4.6.2 Single Fiber Pullout Tests
4.6.3 Curved Neck Specimen Test
4.6.4 Instrumented Indentation Tests
4.6.5 Fragmentation Test
4.6.6 Laser Spallation Technique
References
Part II
5 Polymer Matrix Composites
5.1 Processing of PMCs
5.1.1 Processing of Thermoset Matrix Composites
5.1.2 Thermoplastic Matrix Composites
5.1.3 Sheet Molding Compound
5.1.4 Carbon Fiber Reinforced Polymer Composites
5.2 Interface in PMCs
5.2.1 Glass Fiber/Polymer
5.2.2 Carbon Fiber/Polymer Interface
5.2.3 Polyethylene Fiber/Polymer Interface
5.3 Structure and Properties of PMCs
5.3.1 Structural Defects in PMCs
5.3.2 Mechanical Properties
5.4 Applications
5.4.1 Pressure Vessels
5.5 Recycling of PMCs
References
6 metal Matrix Composites
6.1 Types of metal Matrix Composites
6.2 important metallic Matrices
6.2.1 Aluminum Alloys
6.2.2 Titanium Alloys
6.2.3 Magnesium Alloys
6.2.4 Copper
6.2.5 Intermetallic Compounds
Contents xix
6.3 Processing
6.3.1 Liquid-State Processes
6.3.2 Solid State Processes
6.3.3 In Situ Processes
6.4 Interfaces in metal Matrix Composites
6.4.1 Major Discontinuities at Interfaces in MMCs
6.4.2 Interfacial Bonding in metal Matrix Composites
6.5 Properties
6.5.1 Modulus
6.5.2 Strength
6.5.3 Thermal Characteristics
6.5.4 High Temperature Properties, Creep, and Fatigue
6.6 Applications
6.6.1 Electronic-Grade MMCs
6.6.2 Recycling of metal Matrix Composites
References
7 Ceramic Matrix Composites
7.1 Processing of CMCs
7.1.1 Cold Pressing and Sintering
7.1.2 Hot Pressing
7.1.3 Reaction Bonding Processes
7.1.4 Infiltration
7.1.5 Directed Oxidation or the Lanxide[表情] Process
7.1.6 In Situ Chemical Reaction Techniques
7.1.7 Sol–Gel
7.1.8 Polymer Infiltration and Pyrolysis
7.1.9 Electrophoretic Deposition
7.1.10 Self-Propagating High-Temperature Synthesis
7.2 Interface in CMCs
7.3 Properties of CMCs
7.4 Toughness of CMCs
7.4.1 Crack Deflection at the Interface in a CMC
7.5 Thermal Shock Resistance
7.6 Applications of CMCs
7.6.1 Cutting Tool Inserts
7.6.2 Ceramic Composite Filters
7.6.3 Other Applications of CMCs
References
8 Carbon Fiber/Carbon Matrix Composites
8.1 Processing of Carbon/Carbon Composites
8.1.1 High Pressure Processing
8.2 Oxidation Protection of Carbon/Carbon Composites
8.3 Properties of Carbon/Carbon Composites
8.3.1 Thermal Properties
8.3.2 Frictional Properties of the Composites
8.3.3 Ablative Properties
8.4 Applications of Carbon/Carbon Composites
8.4.1 Carbon/Carbon Composite Brakes
8.4.2 Other Applications of Carbon/Carbon Composites
8.4.3 Carbon/SiC Brake Disks
References
9 Multifilamentary Superconducting Composites
9.1 The Problem of Flux Pinning
9.2 Types of Superconductor
9.3 Processing and Structure of Multifilamentary
Superconductors
9.3.1 Niobium–Titanium Alloys
9.3.2 A15 Superconductors
9.3.3 Ceramic Superconductors
9.4 Applications
9.4.1 Magnetic Resonance Imaging
References
Part III
10 Micromechanics of Composites
10.1 Density
10.2 Mechanical Properties
10.2.1 Prediction of Elastic Constants
10.2.2 Micromechanical Approaches
10.2.3 Halpin-Tsai Equations
10.2.4 Transverse Stresses
10.3 Thermal Properties
10.3.1 expressions for Coefficients of Thermal
Expansion of Composites
10.3.2 expressions for Thermal Conductivity
of Composites
10.3.3 Electrical Conductivity
10.3.4 Hygral and Thermal Stresses
10.3.5 Thermal Stresses in Fiber Reinforced Composites
10.3.6 Thermal Stresses in Particulate Composites
10.4 Mechanics of Load Transfer from Matrix to Fiber
10.4.1 Fiber Elastic–Matrix Elastic
10.4.2 Fiber Elastic–Matrix Plastic
10.5 Load Transfer in Particulate Composites
References
11 Macromechanics of Composites
11.1 Elastic Constants of an Isotropic Material
11.2 Elastic Constants of a Lamina
11.3 Relationships Between Engineering Constants
and Reduced Stiffnesses and Compliances
11.4 Variation of Lamina Properties with Orientation
11.5 Analysis of Laminated Composites
11.5.1 Basic Assumptions
11.5.2 Constitutive Relationships
for Laminated Composites
11.6 Stresses and Strains in Laminate Composites
11.7 Interlaminar Stresses and Edge Effects
References
12 Monotonic Strength and Fracture
12.1 Tensile Strength of Unidirectional Fiber Composites
12.2 Compressive Strength of Unidirectional Fiber Composites
12.3 Fracture Modes in Composites
12.3.1 Single and Multiple Fracture
12.3.2 Debonding, Fiber Pullout,
and Delamination Fracture
12.4 Effect of Variability of Fiber Strength
12.5 Strength of an Orthotropic Lamina
12.5.1 Maximum Stress Theory
12.5.2 Maximum Strain Criterion
12.5.3 Maximum Work (or the Tsai–Hill) Criterion
12.5.4 Quadratic Interaction Criterion
References
13 Fatigue and Creep
13.1 Fatigue
13.1.1 S–N Curves
13.1.2 Fatigue Crack Propagation
13.1.3 Damage Mechanics of Fatigue
13.1.4 Thermal Fatigue
13.2 Creep
13.3 Closure
References
14 Designing with Composites
14.1 General Philosophy
14.2 Advantages of Composites in Structural Design
14.2.1 Flexibility
14.2.2 Simplicity
14.2.3 Efficiency
14.2.4 Longevity
14.3 Some Fundamental Characteristics
of Fiber Reinforced Composites
14.4 Design Procedures with Composites
14.5 Hybrid Composite Systems
References
15 Nonconventional Composites
15.1 Nanocomposites
15.1.1 Polymer Clay Nanocomposites
15.2 Self-Healing Composites
15.3 Self-Reinforced Composites
15.4 Biocomposites
15.5 Laminates
15.5.1 Ceramic Laminates
15.5.2 Hybrid Composites
References
Appendix A Matrices
Appendix B Fiber Packing in Unidirectional Composites
Appendix C Some important Units and Conversion Factors
Author Index
Subject Index
       更多詳細報道請關注復材網www.newfuner.com
 
[ 復材學院搜索 ] [ 加入收藏 ] [ 告訴好友 ] [ 打印本文 ] [ 關閉窗口 ]
電子雜志
《中華人民共和國增值電信業務經營許可證》    編號:魯 B2-20041020號    版權所有  德州博維網絡信息服務有限公司     
熱線:400 9696 921  電話:0534-2666809    傳真:0534-2220102    郵箱:frp@cnfrp.com
 Copyright (c) 2002-2020 CNFRP.COM All Rights Reserved.    本網法律顧問:金延峰律師(手機:13953449218)

  魯公網安備 37140202000173號

關注復材網微信
一个色综合